TUTORIAL NOTES FOR MATH4010

JUNHAO ZHANG

1. DUAL SPACE OF $C([a, b])$

Let us discuss the dual space of $C([a, b])$.
Example $1\left((C([a, b]))^{*}=B V([a, b])\right)$. Every bounded linear functional L on $C([a, b])$ can be represented by a Riemann-Stieltjes integral

$$
L(f)=\int_{a}^{b} f d g, \quad \forall f \in C([a, b])
$$

where $g \in B V([a, b])$ with $\|L\|=V_{a}^{b}(g)$.
Proof. Recall the definition of Riemann-Stieltjes integral. Let x and y be bounded functions on the closed interval $[a, b]$, and

$$
P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}
$$

a partition of $[a, b]$. The norm of P is defined by

$$
\|P\|=\max _{1 \leq k \leq n}\left(t_{k}-t_{k-1}\right)
$$

We arbitrarily select points $\tau_{k} \in\left[t_{k-1}, t_{k}\right], 1 \leq k \leq n$, and define a RiemannStieltjes sum by

$$
S(f, g, P, \tau)=\sum_{k=1}^{n} f\left(\tau_{k}\right)\left[g\left(t_{k}\right)-g\left(t_{k-1}\right)\right]
$$

If there is a real number J such that for each $\varepsilon>0$, there exists $\delta>0$ such that

$$
|J-S(f, g, P, \tau)|<\varepsilon
$$

for every P satisfying $\|P\|<\delta$, then J is called the Riemann-Stieltjes integral of f with respect to g on $[a, b]$, and is denoted by

$$
J=\int_{a}^{b} f(t) d g(t)=\int_{a}^{b} f d g
$$

Recall the definition of $B V([a, b])$. Let g be a real-valued function on the interval $[a, b]$ and let

$$
P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}
$$

be a partition of $[a, b]$. The variation of g on $[a, b]$ with respect to P is defined by

$$
V_{a}^{b}(g, P)=\sum_{k=1}^{n}\left|g\left(t_{k}\right)-g\left(t_{k-1}\right)\right|
$$

If there is a constant M such that

$$
V_{a}^{b}(g, P)<M
$$

for every partition P of $[a, b]$, then we call g is a function of bounded variation, a BV-function for short, on $[a, b]$ and define the total variation of g over the interval $[a, b]$ as

$$
V_{a}^{b}(g)=\sup \left\{V_{a}^{b}(g, P): P \text { is a partition of }[a, b]\right\}
$$

The set of all BV-functions on $[a, b]$ is denoted by $B V([a, b])$.
Let $B([a, b])$ be the vector space of all bounded functions on $[a, b]$ endowed with the sup-norm and L a bounded linear functional on $C([a, b])$. Clearly, $C([a, b])$ is a subspace of $B([a, b])$. By the Hahn-Banach theorem, L has an extension \tilde{L} on $B([a, b])$ such that $\|\tilde{L}\|_{(B([a, b]))^{*}}=\|L\|_{(C([a, b]))^{*}}$.

To find the function $g \in B V([a, b])$ such that

$$
L(f)=\int_{a}^{b} f d g, \quad \forall f \in C([a, b])
$$

where $\int_{a}^{b} f d g$ is the Riemann-Stieltjes integral. Consider the family of functions in $B([a, b])$ defined by

$$
f_{t}(\tau)= \begin{cases}1, & a \leq \tau \leq t \\ 0, & t<\tau \leq b\end{cases}
$$

and define g by

$$
g(t)= \begin{cases}0, & t=a \\ \tilde{L}\left(f_{t}\right), & a<t \leq b\end{cases}
$$

We claim that $g \in B V([a, b])$. Indeed, let us define

$$
\varepsilon_{k}=\operatorname{sgn}\left(g\left(t_{k}\right)-g\left(t_{k-1}\right)\right), \quad 1 \leq k \leq n
$$

where $a=t_{0}<t_{1}<\cdots<t_{n}=b$ is a partition of $[a, b]$. Therefore

$$
\begin{aligned}
\sum_{k=1}^{n}\left|g\left(t_{k}\right)-g\left(t_{k-1}\right)\right| & =\sum_{k=1}^{n} \varepsilon_{k}\left[g\left(t_{k}\right)-g\left(t_{k-1}\right)\right] \\
& =\varepsilon_{1} \tilde{L}\left(f_{t_{1}}\right)+\sum_{k=2}^{n} \varepsilon_{k}\left[\tilde{L}\left(f_{t_{k}}\right)-\tilde{L}\left(f_{t_{k-1}}\right)\right] \\
& =\tilde{L}\left(\varepsilon_{1} f_{t_{1}}+\sum_{k=2}^{n} \varepsilon_{k}\left(f_{t_{k}}-f_{t_{k-1}}\right)\right) \\
& \leq\|\tilde{L}\|_{(B([a, b]))^{*}} \cdot\left\|\varepsilon_{1} f_{t_{1}}+\sum_{k=2}^{n} \varepsilon_{k}\left(f_{t_{k}}-f_{t_{k-1}}\right)\right\|_{\infty}
\end{aligned}
$$

Denote

$$
F(\tau)=\varepsilon_{1} f_{t_{1}}(\tau)+\sum_{k=2}^{n} \varepsilon_{k}\left[f_{t_{k}}(\tau)-f_{t_{k-1}}(\tau)\right]
$$

then for each $\tau \in[a, b]$, only one of the terms $f_{t_{1}}$ and $f_{t_{k}}-f_{t_{k-1}}, 2 \leq k \leq n$, is nonzero, moreover, $|F(\tau)|=1$, therefore $\|F\|_{\infty}=1$, hence

$$
\sum_{k=1}^{n}\left|g\left(t_{k}\right)-g\left(t_{k-1}\right)\right| \leq\|\tilde{L}\|_{(B([a, b]))^{*}}=\|L\|_{(C([a, b]))^{*}}
$$

for every partition of $[a, b]$, which implies $g \in B V([a, b])$ with $V_{a}^{b}(g) \leq\|L\|_{(C([a, b]))^{*}}$.

We claim that for the g defined above,

$$
L(f)=\int_{a}^{b} f d g, \quad \forall f \in C([a, b])
$$

where $\int_{a}^{b} f d g$ is the Riemann-Stieltjes integral. Indeed, for arbitrary given $f \in$ $C([a, b])$, and the partition

$$
P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}
$$

we define a function h_{n} as

$$
f_{n}(\tau)=f\left(t_{0}\right) f_{t_{1}}(\tau)+\sum_{k=2}^{n} f\left(t_{k-1}\right)\left[f_{t_{k}}(\tau)-f_{t_{k-1}}(\tau)\right]
$$

Then $f_{n} \in B([a, b])$. By the definition of g,

$$
\begin{aligned}
\tilde{L}\left(h_{n}\right) & =f\left(t_{0}\right) \tilde{L}\left(f_{t_{1}}\right)+\sum_{k=2}^{n} f\left(t_{k-1}\right)\left[\tilde{L}\left(f_{t_{k}}\right)-\tilde{L}\left(f_{t_{k-1}}\right)\right] \\
& =f\left(t_{0}\right) g\left(t_{1}\right)+\sum_{k=2}^{n} f\left(t_{k-1}\right)\left[g\left(t_{k}\right)-g\left(t_{k-1}\right)\right] \\
& =\sum_{k=1}^{n} f\left(t_{k-1}\right)\left[g\left(t_{k}\right)-g\left(t_{k-1}\right)\right]
\end{aligned}
$$

where we have used the fact $g(a)=0$. The right-hand side of this chain of equalities is the Riemann-Stieltjes sum for the integral $\int_{a}^{b} f d g$. Therefore

$$
\int_{a}^{b} f d g=\lim _{n \rightarrow \infty} \tilde{L}\left(f_{n}\right)
$$

Since $f_{n}(a)=f(a)$ and for $t \in\left(t_{k-1}, t_{k}\right], 1 \leq k \leq n$

$$
\left|f_{n}(t)-f(t)\right|=\left|f\left(t_{k-1}\right)-x(t)\right|
$$

then

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{\infty}=0
$$

therefore by the continuity of \tilde{L},

$$
\lim _{n \rightarrow \infty} \tilde{L}\left(f_{n}\right)=\tilde{L}(f)
$$

which implies

$$
\int_{a}^{b} f d g=\tilde{L}(f)=L(f)
$$

where we have used the fact that \tilde{L} is a extension of L. Moreover,

$$
|L(f)|=\left|\int_{a}^{b} f d g\right| \leq \max _{t \in[a, b]}|f(t)| \cdot V_{a}^{b}(g)
$$

implies

$$
\|L\|_{(C([a, b]))^{*}} \leq V_{a}^{b}(g),
$$

therefore $\|L\|_{(C([a, b]))^{*}}=V_{a}^{b}(g)$.
Email address: jhzhang@math.cuhk.edu.hk

